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ABSTRACT

A global reforecast dataset was recently created for the National Centers for Environmental Prediction’s

Global Ensemble Forecast System (GEFS). This reforecast dataset consists of retrospective and real-time

ensemble forecasts produced for the GEFS from 1985 to present day. An 11-member ensemble was produced

once daily to115-day lead time from 0000UTC initial conditions.While the forecast model was stable during

the production of this dataset, in 2011 and several times thereafter, there were significant changes to the

forecast model that was used in the data assimilation system itself, as well as changes to the assimilation

system and the observations that were assimilated. These changes resulted in substantial changes in the

statistical characteristics of the reforecast dataset. Such changes make it challenging to uncritically use re-

forecasts for statistical postprocessing, which commonly assume that forecast error and bias are approxi-

mately consistent from one year to the next. Ensuring the consistency in the statistical characteristics of past

and present initial conditions is desirable but can be in tension with the expectation that prediction centers

upgrade their forecast systems rapidly.

1. Introduction

Statistical postprocessing refers to the adjustment of

the current raw forecast guidance using statistical

methods and time series of past forecasts and observa-

tions or analyses. Statistical postprocessing has a long

heritage in many national weather services, decreasing

systematic errors and improving probabilistic forecast

skill and reliability (e.g., Glahn and Lowry 1972; Carter

et al. 1989). In recent years, statistical postprocessing has

increasingly been called upon to provide value-added

guidance for difficult forecast problems, including high-

impact weather such as heavy precipitation forecasts

(Scheuerer and Hamill 2015, see their appendixes A–C)

and for forecasts with lead times measured in weeks, not

days (Hamill et al. 2004). In such situations, when a long

time series of past forecasts (i.e., reforecasts) are avail-

able, they can be very useful in the postprocessing,

helping distinguish the predictable signal amid the

chaos-induced noise and the accumulating model bias.

The author has twice now participated in the generation

of global weather reforecast datasets, multidecadal

retrospective forecasts using an operational forecast

model (Hamill et al. 2006, 2013). The author has also

workedwith theU.S. NationalWeather Service to set up

an infrastructure so that future reforecasts can be gen-

erated that are of high quality and statistical consistency.

This short manuscript describes a significant potential

challenge with the production and use of reforecasts;

namely, the challenges introduced when the reforecasts

are initialized with a data assimilation system that is

evolving. Even if the underlying forecast model is held

fixed during a period of reforecast generation, theremay

be changes in systematic error characteristics of the

underlying analysis due to changes in the data assimi-

lation methodology, the type and number of observa-

tions, and the forecast model that provides its

background. Consequently, the reforecast product may

also have changes in its systematic errors, degrading

their utility.

In the following sections, we will briefly describe the

National Centers for Environmental Prediction (NCEP)

Global Ensemble Forecast System (GEFS) reforecast

dataset examined here and recent changes in the as-

similation system (section 2). Section 3 provides some

examples of changes in the bias of the reforecast system

as a consequence of assimilation system changes.
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Section 4 provides a discussion about the problems

noted in this article and how they may be addressed

when generating future reforecasts.

2. A description of the GEFS reforecast procedure
and evolution of the underlying data assimilation
system

Second-generation global ensemble reforecasts from

NCEPGEFSwere describedmore thoroughly inHamill

et al. (2013). We review salient details here.

Once-daily (from 0000 UTC initial conditions),

11-member reforecasts and real-time ensemble forecasts

have been generated from 1 January 1985 to present day

using the NCEP GEFS model system as was imple-

mented operationally at 1200 UTC 14 February 2012.

This was version 9.0.1 of the GEFS (discussed online at

http://www.emc.ncep.noaa.gov/GFS/impl.php). There

is a known bug in version 9.0.1 that resulted in the use of

incorrect land surface tables in the land surface param-

eterization, and the effects of this bug contaminated the

near-surface temperatures. This buggy model version

was used for all forecasts for consistency.

During the period of the reforecast and real-time

forecasts, the underlying data assimilation system has

changed multiple times (Table 1). Through 20 February

2011, control initial conditions were generated by the

Climate Forecast System Reanalysis (CFSR; Saha et al.

2010), computed with a three-dimensional (3D) varia-

tional data assimilation scheme using background fore-

casts from a specially designed version of the Global

Forecast System (GFS) at T382L64 resolution (i.e.,

spectral triangular truncation at wavenumber 382 with

64 vertical levels). From 20 February 2011 to May 2012,

initial conditions were taken from the operational

Gridpoint Statistical Interpolation analysis system

(GSI), with a somewhat different version of theGFS and

T574L64 resolution. After 22 May 2012, the GSI was

upgraded to use a hybrid ensemble Kalman filter/3D

variational analysis system (Kleist and Ide 2015). This

analysis improved the skill of operational GEFS fore-

casts and thus of the reforecasts introduced into the

TABLE 1.A list ofmajor implementation to theGFS and its data assimilation system that could have impacted the statistical characteristics

of near-surface analyses.

Date System Change

9 May 2011 GFS 1) New thermal surface roughness length

2) Update to new version of Community Radiative Transfer Model

22 May 2012 GFS and GDAS 1) Incorporation of a hybrid 3D variational–ensemble data assimilation system

2) Various additional changes to the assimilation of remotely sensed data

3) Addition of new satellite wind data quality control

5 Sep 2012 GFS land surface 1) Change to a lookup table in land surface scheme that modulates evapotranspiration

based on vegetation type and root zone depth to mitigate a warm-season cool bias in GFS

14 Jan 2015 GFS 1) Increase GFS horizontal resolution from T574 (;27 km) to T1534 (;13 km)

2) Change from Eulerian to semi-Lagrangian dynamics

3) Replace Reynolds SST analysis with 5-min daily real-time global SST

4) Initialize ice at small inland lakes in NH with 4-km multisensor snow and ice mapping

system

5) Use 1982–2012 updated SST and sea ice climatology

6) Replace old update of model snow depth by direct insertion of U.S. Air Force–provided depth

data with a blend of the model first guess and U.S. Air Force depth

7) Reduce drag coefficient at high wind speeds

8) Replace bucket soil moisture climatology with CFS/GLDAS climatology at T574

9) Replace 18 momentum roughness length climatology with lookup table based on

vegetation type

10) Add a dependence of the ratio of thermal and momentum roughness on vegetation

type

11) Increase ensemble Kalman filter resolution used in hybrid 3D variational data

assimilation from T254L64 to T574L64

12) Assimilate hourly geostationary satellite atmospheric motion vectors

13) Use improved stochastic physics in EnKF ensemble forecasts

11 May 2016 GFS and GDAS 1) Change from 3D variational hybrid to 4D variational hybrid assimilation system

2) Addition of various satellite data (AMSU-A, AVHRR-derived winds)

3) Improve aircraft data bias correction

4) Community Radiative Transfer Model upgrade and bug fix

5) Correction of land surface characteristics for grassland and cropland to reduce

summertime warm and dry biases over Great Plains

6) Improve convective gravity wave drag
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archive subsequent to that date. Several other significant

implementations followed, including a correction to the

land surface table bug fix in the underlying GFS system

in September 2012 (though not in the GEFS system), a

large number of changes to the GFS and GSI systems in

January 2015, and a change from 3D to 4D hybrid

ensemble–variational analysis inMay 2016.More details

on these changes are provided in Table 1. The main

point here is that prior to the 2012 version of the GEFS

becoming operational, the initial conditions were ob-

tained from CFSR, and subsequent reanalyses and re-

forecasts were created. Thereafter, the real-time

forecasts from GEFS version 9.0.1 were archived;

though the GEFS forecast system was fixed, the un-

derlying control analyses feeding them changed

significantly.

3. Examples of temporal changes in the GEFS
reforecast characteristics

In this section we focus on changes to the thermody-

namic and precipitation characteristics of analyses and

forecasts in the GEFS reforecasts. In particular, we will

consider their characteristics in the central to eastern

United States, where in recent years there have been

notable biases in the GFS near-surface analyses (M. Ek

2016, personal communication). Consider cumulative

distribution functions (CDFs) of convective available

potential energy (CAPE; Bluestein 1993, his section

3.4.5), shown in Fig. 1. Again, prior to 2011, GEFS re-

forecasts were initialized from the CFS reanalysis, and

afterward from the real-time analysis. The April–June

CDFs of analyzed CAPE indicate that the frequency

distribution subsequent to 2011 was shifted to dramati-

cally higher CAPE relative to before 2011. For example,

the 80th percentile of analyzed CAPE was 800 J kg21

prior to 2011 and approximately 2100 J kg21 thereafter.

This analysis bias affected the forecasts as well, with

shorter-range forecasts showing more of an effect of the

analysis change than longer-lead forecasts (blue curves).

By1120h, regardless of the initial analysis, distributions

of forecast CAPEwere relatively similar, indicating that

the GEFS forecasts adjusted to the intrinsic bias of that

version of the prediction system used in the reforecast.

The implications of this are that distributions of refor-

ecast CAPE do not have anything close to stationary

error statistics for forecasts with short lead times. Hence,

reforecast-based postprocessing methodologies utilizing

CAPE as a predictor must account for this change in

character in order to provide meaningful results.

What underlies this change in CAPE, changes in

temperature and/or changes in moisture analyses? This

article will not examine changes above the surface, but

Fig. 2 provides information on differences in tempera-

ture and dewpoint 2m above the surface with respect to

ERA-Interim (Dee et al. 2011), a reanalysis that used a

stable forecast model and assimilation system. Figure 2a

shows ERA-Interim temperature and dewpoints aver-

aged over data from the same region shown in Fig. 1b.

Notice the annual cycle of monthly mean temperature,

with only modest departures from year to year, consis-

tent with interannual variability. Figure 2b then shows

the differences of the GEFS initial state in this region

relative to ERA-Interim. The most noticeable differ-

ence is that subsequent to 2011, the GEFS 2-m differ-

ences from ERA-Interim indicate that the GEFS

become markedly moister. Dewpoint differences

(GEFS minus ERA-Interim) jump 18–38C in the warm

season, relative to their differences prior to 2011. The

FIG. 1. Changes in the cumulative distribution function of ana-

lyses and forecasts of convectively available potential energy

(CAPE) from GEFS reforecast initialization prior to vs during/

after 2011. Data composited over April–June data for the region

shown in the inset box. Red lines denote analyses, and blue lines

denote reforecasts. Solid lines indicate data from before 2011, and

dashed lines for data during and after 2011. Forecast CAPE at the

(a) 24-h lead and (b) 120-h forecast lead. Inset box shows the do-

main where CDFs were calculated in the U.S. Great Plains.
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0000 UTC temperature differences also change; GEFS

0000UTC analyses becomemoremarkedly cool relative

to ERA-Interim, especially in the 2011–14 time period.

Since CAPE calculations are more sensitive to dewpoint

perturbations, the increase in the analyzed moisture

subsequent to 2011 are likely responsible for the in-

crease in CAPE seen in Fig. 1.

Did the character of precipitation forecasts also

change markedly subsequent to 2011? Since pre-

cipitation distributions are often well fit with modified

Gamma distributions [Scheuerer and Hamill (2015) and

references therein], we first consider the characteristic

distributions fitted to forecast and analyzed data.

Gamma distributions are used for the fits and represent

average parameters over the same region shown in

Fig. 1b. Rather than using the more involved censored,

shifted Gamma distributions of Scheuerer and Hamill

(2015), here we fit three parameters: (i) the percentage

of samples with zero precipitation, and for the remaining

samples with nonzero precipitation, the fitted Gamma

distribution (ii) shape (a) and (iii) scale (b) parameters.

Fitted parameters used the maximum likelihood esti-

mator approach of Thom (1958) discussed in Wilks

(2011). Data are shown for samples of GEFS reforecast

and 1/88 Climatology-Calibrated Precipitation Analysis

(CCPA) data (Hou et al. 2014). Figure 3 shows sub-

stantial annual and interannual variability of the fitted

parameters, but it does not show any readily apparent

systematic change subsequent before versus after 2011,

as was seen with CAPE and dewpoint.

FIG. 2. (a) Time series of 2-m temperatures and dewpoints at 0000 UTC from ERA-Interim using the same box

shown in Fig. 1b. (b) Time series of mean differences at 0000 UTC between the temperature of the GEFS initial

analysis and the ERA-Interim analysis for temperature (orange curve) and dewpoint (blue curve).
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It is still possible that regression relationships between

forecast and observed may have changed during that

period. To examine this, we fit an extended logistic-

regression model (Wilks 2009) to postprocess the pre-

cipitation data. This postprocessing method permits

the estimation of a full probability distribution from the

input data. For a given precipitation amount q, the

probability of equaling or exceeding q is assumed to

follow the functional form as

p(q)5
exp[b

0
1b

1
g(q)1b

2
x]

11 exp[b
0
1b

1
g(q)1b

2
x]
, (1)

where b0, b1, and b2 are fitted parameters and x is

the power-transformed ensemble-mean precipitation

amount. Precipitation forecasts were transformed with a

square root transformation (ibid.) and used the function

g(q)5
ffiffiffi

q
p

(ibid.). In this approach, data were pooled

across the geographic region of interest and fit using all

data during the month of interest. Training was per-

formed simultaneously over amount thresholds of 0.4,

1.0, 2.5, 5.0, and 10mm. Figure 4 shows the time series

of fitted extended logistic distribution parameters

for 112- to 124-h forecasts. It does not appear that the

fitted parameters after 2011 are statistically inconsistent

with the fitted parameters before 2011, though there is

some suggestion that the intercept parameter b0 may differ

before versus after 2011. Figure 5 illustrates $5mm

(12h)21 probability forecasts based on these extended lo-

gistic regressionmodels as a function of the year/month and

the forecast amount. From visual inspection, there does not

appear to be a noticeable change in the regression model

before versus after 2011. This suggests that precipitation

forecast data may not be as strongly affected as for the

thermodynamic information, somewhat surprisingly.

4. Discussion and conclusions

The challenges of generating a reforecast with stable

forecast-error characteristics was demonstrated in this

article. Even if reforecasts were generated using the

same forecast model as used in the real-time system,

should the analyses used in the forecast initialization

change, then the characteristics of the reforecasts can

change as well. In the example shown here, GEFS

reforecasts prior to 2011 used data from the CFS

FIG. 3. Time series of parameter fits of precipitation for CCPA analyses (orange) and 12–24-h GEFS member

forecasts (blue) in the region shown in Fig. 1b. Separate parameter fits were prepared for each month of the year

from 2002 to 2016. (a) The percentage of grid points reporting zero precipitation, (b) the fitted shape parameter for

analysis and forecast, and (c) the fitted scale parameter.
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reanalysis and thereafter used real-time analyses. These

changed several times in 2011 and thereafter. The effects

were particularly noticeable in short-range forecasts of

thermodynamic variables. One might expect that other

prediction centers that use reforecasts such as the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) might also have similar problems with their

reforecasts, some of which are currently initialized from

ERA-Interim (Dee et al. 2011). This article did not ex-

amine ECMWF data, however.

While reforecasts are strongly desired for many

applications, including precipitation postprocessing,

hydrologic forecast system validation, and the post-

processing of longer-lead forecasts, it is apparent that

thought and care must be put into how a reforecast

system is configured. Suppose an ensemble reanalysis

and reforecast are generated with the current assimila-

tion and forecast system (currently in the U.S. National

Weather Service, these are based on hydrostatic spectral

global models). Thereafter, the deterministic forecast

FIG. 4. Time series of monthly fitted extended logistic regression parameters using GEFS ensemble-mean

reforecasts trained against 1/88 CCPA data for points in the box shown in Fig. 1b.

FIG. 5. Probability forecasts based on regression model using parameters from Fig. 4.
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model and the forecast model used in the data assimi-

lation system changes, perhaps to a new dynamical core,

as indeed the United States anticipates doing in the next

few years. In such a case, the statistical characteristics of

the (spectral based) reanalysis differ greatly from the

characteristics of the eventual (grid point based) real-

time analyses. The reforecast will inherit such differ-

ences, making the dataset nonstationary and more

difficult to use in postprocessing.

While reanalysis and reforecasting may be neces-

sary to provide the long training and validation

datasets needed for many applications, they must be

constructed carefully. Such datasets are very compu-

tationally expensive to generate. To provide a suffi-

cient return on such an investment, some guiding

principles for their construction are proposed. 1) If

major system changes are anticipated, it is preferable

to generate a new reanalysis and reforecast after the

system has changed and proven stable rather than

before. Should this advice be ignored, it may become

apparent that a new reanalysis and reforecast are

necessary a few scant months or years after the last

one starts to be used operationally. 2) Sometimes

major changes to a forecast system are necessary.

Arguably, a change to a new dynamical core that

permits the explicit prediction of thunderstorms is one

of those necessary changes. Some other changes,

however, might provide only slight improvements to

the RMS errors of forecasts but might notably change

the bias characteristics. The possible effects on pre-

viously generated reforecasts might thus be a new and

useful criterion to evaluate when deciding whether a

proposed change is implemented. 3) Related to 2), it

may be preferable to build systems that maintain a low

and consistent bias, even if RMS errors may be higher

than what is possible with a more biased system.When

we consider reforecasts and their use in postprocess-

ing as part of the system, then small improvements in

error accompanied by large changes in bias may de-

grade rather than improve the final product, unless

new reanalyses and reforecasts can be generated

again. Perhaps this may motivate operational pre-

diction centers to attempt to bias correct the back-

ground forecasts in the data assimilation (Dee 2005).

National weather services are increasingly embracing

the regular generation of reanalyses and reforecasts, as

they can tremendously improve the skill of the final

numerical guidance via postprocessing. However, these

technologies cannot simply be unthinkingly bolted onto

an existing prediction system. Seeing numerical weather

prediction as a holistic process including postprocessing,

we should change our procedures for evaluating poten-

tial changes to our prediction system; postprocessed skill

and stability of biases become criteria to consider as well

as raw numerical skill.
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